Home » Il dominio degli attosecondi

Il dominio degli attosecondi

di Paolo Villoresi

I premi Nobel 2023 sono andati a tre scienziati, Pierre Agostini, Ferenc Krausz e Anne L’Huillier, e che hanno contribuito ad affermare il dominio degli attosecondi nel più ampio contesto degli impulsi elettromagnetici e in generale dei fenomeni transitori artificiali. Un atto secondo equivale a 1.000.000.000º di miliardesimo di secondo.

La durata di un attosecondo, quindi, è assai lontana da quella che i nostri sensi percepiscono, e infatti si riferisce alla scala dei processi del microcosmo. Come esempio, considerando il moto di un elettrone intorno al nucleo dell’atomo più semplice, l’idrogeno, e sulla base dell’energia di legame si può ricavare che l’equivalente del periodo di rotazione, ossia un’orbita classica, a una durata dell’ordine di 150 attosecondi.

La capacità di generare impulsi in questa scala temporale quindi conferisce la possibilità di studiare o di controllare la dinamica intrinseca degli elettroni. In questo modo la nostra capacità di analisi evolve da un’osservazione solo dei valori medi e, in linguaggio tecnico, delle larghezze spettrali delle righe spettroscopiche allo studio dell’evoluzione nel dominio del tempo. Per comprendere questa possibilità possiamo pensare ad un altalena e a nostro desiderio di spingere una persona in modo che possa aumentare le ampiezza dell’oscillazione: affinché la nostra spinta sia efficace questa deve avvenire per un tempo inferiore al periodo di oscillazione, altrimenti bloccheremo l’altalena, e deve essere data anche al momento giusto, con la corretta fase rispetto all’oscillazione. In caso contrario otterremo una decelerazione al posto di una accelerazione. Da questo esempio ricaviamo la necessità di poter generare e utilizzare impulsi della durata di decine o poche centinaia di attosecondi e di poter anche controllare con precisione l’istante di interazione.

La tecnica che si è sviluppata per generare e poi misurare questi impulsi si basa sull’interazione di impulsi laser nel vicino infrarosso, come ad esempio i laser a Titanio in zaffiro operanti in agganciamento di modi con lunghezza d’onda centrale di 800 nm. L’uscita di questi laser viene compresa temporalmente con delle tecniche che permettono di arrivare ad un impulso di pochi femtosecondi, ossia 1.000.000º di miliardesimo di secondo. un femtosecondo corrisponde quindi a 1000 attosecondi. Il metodo principale si basa sull’invenzione del professor Orazio Svelto e collaboratori del politecnico di Milano ed è chiamata auto modulazione di fase in fibra cava. Data la brevità dell’impulso, la potenza istantanea assume valori molto elevati, dell’ordine di 1013 W per centimetro quadrato. Questi impulsi, focalizzati in un getto di gas, tipicamente argon o neon, sono tali da indurre una ionizzazione ottica degli atomi, ossia gli elettroni vengono strappati dal nucleo e accelerati nel campo dell’laser. Come ha spiegato lo scienziato canadese Paul Corkum, una possibile evoluzione del moto dell’elettrone consiste nella sua ricombinazione con lo ione del quale proviene, con la conseguente emissione di luce, ossia di un fotone, al quale è conferita molta energia: sia il potenziale ionizzazione che l’energia cinetica conferita nell’accelerazione. In questo modo l’interazione del laser infrarosso con il gas permette di convertire la radiazione dall’infrarosso all’ultravioletto, fino anche alla regione chiamata extreme-ultraviolet, corrispondenti a lunghezze d’onda dell’ordine di poche decine di nanometri.

Per ottenere impulsi della durata di pochi decine di attosecondi è necessario comprimere temporalmente la radiazione generata, utilizzando dei dispositivi chiamati compressori ultravioletti.

E i tre premiati con il Nobel hanno operato le loro scoperte in Europa tra la fine degli anni 80 e la prima decade di questo secolo. È interessante osservare che i loro contributi hanno avuto luogo in una comunità ristretta ma molto dinamica e determinata. infatti nell’ambito di progetti europei di ricerca e anche di progetti di formazione dottorale di tipo Marie Curie, diversi laboratori di ricerca europei hanno unito le loro diverse competenze allo sforzo di risolvere i problemi nella generazione e nella misura di questo tipo di impulsi. in particolare, la professoressa Anne L’Huillier è stata la coordinatrice del primo dei due network Marie Curie, dal promettente nome Atto, in cui si è rafforzata questa comunità e che è durato da 2000 al 2004.

L’Italia ha partecipato a queste ricerche, oltre che a questi network con un team composto dal politecnico di Milano, l’Università di Padova e il CNR Istituto di fotonica e nanotecnologie.

In Italia sono stati compiuti passi importanti come lo sviluppo di sistemi ottici nel dominio dell’estremo ultravioletto particolarmente adatti alla generazione e misura degli impulsi ad atto secondi da parte patavina e naturalmente allo sfruttamento delle sorgenti laser ultra veloci ideate al Politecnico di Milano, oltre a unire le forze per la comprensione teorica e ad effettuare gli esperimenti. questa collaborazione, estesa anche all’Università Federico II di Napoli ci ha permesso di ottenere nel 2006 un risultato di particolare rilevanza: la generazione di un impulso isolato della durata di 130 atto secondi. per la prima volta si è scesi al di sotto del tempo di riferimento dell’orbita classica dell’elettrone nell’atomo di idrogeno. Questo è costituito il record mondiale dell’evento artificiale più breve, che è durato circa due anni e mezzo. Le applicazioni di queste tecniche sono continuate in Italia e in collaborazione con molti gruppi.

L’attuale limite è stato ridotto, perfezionando le tecniche sopra descritte fino al record attuale di 43 attosecondi.